Add generate test audio script
This commit is contained in:
476
examples/wav_client.py
Normal file
476
examples/wav_client.py
Normal file
@@ -0,0 +1,476 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
WAV file client for testing duplex voice conversation.
|
||||
|
||||
This client reads audio from a WAV file, sends it to the server,
|
||||
and saves the AI's voice response to an output WAV file.
|
||||
|
||||
Usage:
|
||||
python examples/wav_client.py --input input.wav --output response.wav
|
||||
python examples/wav_client.py --input input.wav --output response.wav --url ws://localhost:8000/ws
|
||||
python examples/wav_client.py --input input.wav --output response.wav --wait-time 10
|
||||
python wav_client.py --input ../data/audio_examples/two_utterances.wav -o response.wav
|
||||
Requirements:
|
||||
pip install soundfile websockets numpy
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import json
|
||||
import sys
|
||||
import time
|
||||
import wave
|
||||
from pathlib import Path
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
except ImportError:
|
||||
print("Please install numpy: pip install numpy")
|
||||
sys.exit(1)
|
||||
|
||||
try:
|
||||
import soundfile as sf
|
||||
except ImportError:
|
||||
print("Please install soundfile: pip install soundfile")
|
||||
sys.exit(1)
|
||||
|
||||
try:
|
||||
import websockets
|
||||
except ImportError:
|
||||
print("Please install websockets: pip install websockets")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
class WavFileClient:
|
||||
"""
|
||||
WAV file client for voice conversation testing.
|
||||
|
||||
Features:
|
||||
- Read audio from WAV file
|
||||
- Send audio to WebSocket server
|
||||
- Receive and save response audio
|
||||
- Event logging
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
url: str,
|
||||
input_file: str,
|
||||
output_file: str,
|
||||
sample_rate: int = 16000,
|
||||
chunk_duration_ms: int = 20,
|
||||
wait_time: float = 15.0,
|
||||
verbose: bool = False
|
||||
):
|
||||
"""
|
||||
Initialize WAV file client.
|
||||
|
||||
Args:
|
||||
url: WebSocket server URL
|
||||
input_file: Input WAV file path
|
||||
output_file: Output WAV file path
|
||||
sample_rate: Audio sample rate (Hz)
|
||||
chunk_duration_ms: Audio chunk duration (ms) for sending
|
||||
wait_time: Time to wait for response after sending (seconds)
|
||||
verbose: Enable verbose output
|
||||
"""
|
||||
self.url = url
|
||||
self.input_file = Path(input_file)
|
||||
self.output_file = Path(output_file)
|
||||
self.sample_rate = sample_rate
|
||||
self.chunk_duration_ms = chunk_duration_ms
|
||||
self.chunk_samples = int(sample_rate * chunk_duration_ms / 1000)
|
||||
self.wait_time = wait_time
|
||||
self.verbose = verbose
|
||||
|
||||
# WebSocket connection
|
||||
self.ws = None
|
||||
self.running = False
|
||||
|
||||
# Audio buffers
|
||||
self.received_audio = bytearray()
|
||||
|
||||
# Statistics
|
||||
self.bytes_sent = 0
|
||||
self.bytes_received = 0
|
||||
|
||||
# TTFB tracking
|
||||
self.send_start_time = None
|
||||
self.first_audio_received = False
|
||||
self.ttfb_ms = None
|
||||
|
||||
# State tracking
|
||||
self.track_started = False
|
||||
self.track_ended = False
|
||||
self.send_completed = False
|
||||
|
||||
# Events log
|
||||
self.events_log = []
|
||||
|
||||
def log_event(self, direction: str, message: str):
|
||||
"""Log an event with timestamp."""
|
||||
timestamp = time.time()
|
||||
self.events_log.append({
|
||||
"timestamp": timestamp,
|
||||
"direction": direction,
|
||||
"message": message
|
||||
})
|
||||
print(f"{direction} {message}")
|
||||
|
||||
async def connect(self) -> None:
|
||||
"""Connect to WebSocket server."""
|
||||
self.log_event("→", f"Connecting to {self.url}...")
|
||||
self.ws = await websockets.connect(self.url)
|
||||
self.running = True
|
||||
self.log_event("←", "Connected!")
|
||||
|
||||
# Send invite command
|
||||
await self.send_command({
|
||||
"command": "invite",
|
||||
"option": {
|
||||
"codec": "pcm",
|
||||
"sampleRate": self.sample_rate
|
||||
}
|
||||
})
|
||||
|
||||
async def send_command(self, cmd: dict) -> None:
|
||||
"""Send JSON command to server."""
|
||||
if self.ws:
|
||||
await self.ws.send(json.dumps(cmd))
|
||||
self.log_event("→", f"Command: {cmd.get('command', 'unknown')}")
|
||||
|
||||
async def send_hangup(self, reason: str = "Session complete") -> None:
|
||||
"""Send hangup command."""
|
||||
await self.send_command({
|
||||
"command": "hangup",
|
||||
"reason": reason
|
||||
})
|
||||
|
||||
def load_wav_file(self) -> tuple[np.ndarray, int]:
|
||||
"""
|
||||
Load and prepare WAV file for sending.
|
||||
|
||||
Returns:
|
||||
Tuple of (audio_data as int16 numpy array, original sample rate)
|
||||
"""
|
||||
if not self.input_file.exists():
|
||||
raise FileNotFoundError(f"Input file not found: {self.input_file}")
|
||||
|
||||
# Load audio file
|
||||
audio_data, file_sample_rate = sf.read(self.input_file)
|
||||
self.log_event("→", f"Loaded: {self.input_file}")
|
||||
self.log_event("→", f" Original sample rate: {file_sample_rate} Hz")
|
||||
self.log_event("→", f" Duration: {len(audio_data) / file_sample_rate:.2f}s")
|
||||
|
||||
# Convert stereo to mono if needed
|
||||
if len(audio_data.shape) > 1:
|
||||
audio_data = audio_data.mean(axis=1)
|
||||
self.log_event("→", " Converted stereo to mono")
|
||||
|
||||
# Resample if needed
|
||||
if file_sample_rate != self.sample_rate:
|
||||
# Simple resampling using numpy
|
||||
duration = len(audio_data) / file_sample_rate
|
||||
num_samples = int(duration * self.sample_rate)
|
||||
indices = np.linspace(0, len(audio_data) - 1, num_samples)
|
||||
audio_data = np.interp(indices, np.arange(len(audio_data)), audio_data)
|
||||
self.log_event("→", f" Resampled to {self.sample_rate} Hz")
|
||||
|
||||
# Convert to int16
|
||||
if audio_data.dtype != np.int16:
|
||||
# Normalize to [-1, 1] if needed
|
||||
max_val = np.max(np.abs(audio_data))
|
||||
if max_val > 1.0:
|
||||
audio_data = audio_data / max_val
|
||||
audio_data = (audio_data * 32767).astype(np.int16)
|
||||
|
||||
self.log_event("→", f" Prepared: {len(audio_data)} samples ({len(audio_data)/self.sample_rate:.2f}s)")
|
||||
|
||||
return audio_data, file_sample_rate
|
||||
|
||||
async def audio_sender(self, audio_data: np.ndarray) -> None:
|
||||
"""Send audio data to server in chunks."""
|
||||
total_samples = len(audio_data)
|
||||
chunk_size = self.chunk_samples
|
||||
sent_samples = 0
|
||||
|
||||
self.send_start_time = time.time()
|
||||
self.log_event("→", f"Starting audio transmission ({total_samples} samples)...")
|
||||
|
||||
while sent_samples < total_samples and self.running:
|
||||
# Get next chunk
|
||||
end_sample = min(sent_samples + chunk_size, total_samples)
|
||||
chunk = audio_data[sent_samples:end_sample]
|
||||
chunk_bytes = chunk.tobytes()
|
||||
|
||||
# Send to server
|
||||
if self.ws:
|
||||
await self.ws.send(chunk_bytes)
|
||||
self.bytes_sent += len(chunk_bytes)
|
||||
|
||||
sent_samples = end_sample
|
||||
|
||||
# Progress logging (every 500ms worth of audio)
|
||||
if self.verbose and sent_samples % (self.sample_rate // 2) == 0:
|
||||
progress = (sent_samples / total_samples) * 100
|
||||
print(f" Sending: {progress:.0f}%", end="\r")
|
||||
|
||||
# Delay to simulate real-time streaming
|
||||
# Server expects audio at real-time pace for VAD/ASR to work properly
|
||||
await asyncio.sleep(self.chunk_duration_ms / 1000)
|
||||
|
||||
self.send_completed = True
|
||||
elapsed = time.time() - self.send_start_time
|
||||
self.log_event("→", f"Audio transmission complete ({elapsed:.2f}s, {self.bytes_sent/1024:.1f} KB)")
|
||||
|
||||
async def receiver(self) -> None:
|
||||
"""Receive messages from server."""
|
||||
try:
|
||||
while self.running:
|
||||
try:
|
||||
message = await asyncio.wait_for(self.ws.recv(), timeout=0.1)
|
||||
|
||||
if isinstance(message, bytes):
|
||||
# Audio data received
|
||||
self.bytes_received += len(message)
|
||||
self.received_audio.extend(message)
|
||||
|
||||
# Calculate TTFB on first audio
|
||||
if not self.first_audio_received and self.send_start_time:
|
||||
self.ttfb_ms = (time.time() - self.send_start_time) * 1000
|
||||
self.first_audio_received = True
|
||||
self.log_event("←", f"[TTFB] First audio latency: {self.ttfb_ms:.0f}ms")
|
||||
|
||||
# Log progress
|
||||
duration_ms = len(message) / (self.sample_rate * 2) * 1000
|
||||
total_ms = len(self.received_audio) / (self.sample_rate * 2) * 1000
|
||||
if self.verbose:
|
||||
print(f"← Audio: +{duration_ms:.0f}ms (total: {total_ms:.0f}ms)", end="\r")
|
||||
|
||||
else:
|
||||
# JSON event
|
||||
event = json.loads(message)
|
||||
await self._handle_event(event)
|
||||
|
||||
except asyncio.TimeoutError:
|
||||
continue
|
||||
except websockets.ConnectionClosed:
|
||||
self.log_event("←", "Connection closed")
|
||||
self.running = False
|
||||
break
|
||||
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
except Exception as e:
|
||||
self.log_event("!", f"Receiver error: {e}")
|
||||
self.running = False
|
||||
|
||||
async def _handle_event(self, event: dict) -> None:
|
||||
"""Handle incoming event."""
|
||||
event_type = event.get("event", "unknown")
|
||||
|
||||
if event_type == "answer":
|
||||
self.log_event("←", "Session ready!")
|
||||
elif event_type == "speaking":
|
||||
self.log_event("←", "Speech detected")
|
||||
elif event_type == "silence":
|
||||
self.log_event("←", "Silence detected")
|
||||
elif event_type == "transcript":
|
||||
text = event.get("text", "")
|
||||
is_final = event.get("isFinal", False)
|
||||
if is_final:
|
||||
self.log_event("←", f"Transcript (final): {text}")
|
||||
elif self.verbose:
|
||||
self.log_event("←", f"Transcript (interim): {text[:50]}...")
|
||||
elif event_type == "ttfb":
|
||||
latency_ms = event.get("latencyMs", 0)
|
||||
self.log_event("←", f"[TTFB] Server latency: {latency_ms}ms")
|
||||
elif event_type == "trackStart":
|
||||
self.track_started = True
|
||||
self.log_event("←", "Bot started speaking")
|
||||
elif event_type == "trackEnd":
|
||||
self.track_ended = True
|
||||
self.log_event("←", "Bot finished speaking")
|
||||
elif event_type == "interrupt":
|
||||
self.log_event("←", "Bot interrupted!")
|
||||
elif event_type == "error":
|
||||
self.log_event("!", f"Error: {event.get('error')}")
|
||||
elif event_type == "hangup":
|
||||
self.log_event("←", f"Hangup: {event.get('reason')}")
|
||||
self.running = False
|
||||
else:
|
||||
self.log_event("←", f"Event: {event_type}")
|
||||
|
||||
def save_output_wav(self) -> None:
|
||||
"""Save received audio to output WAV file."""
|
||||
if not self.received_audio:
|
||||
self.log_event("!", "No audio received to save")
|
||||
return
|
||||
|
||||
# Convert bytes to numpy array
|
||||
audio_data = np.frombuffer(bytes(self.received_audio), dtype=np.int16)
|
||||
|
||||
# Ensure output directory exists
|
||||
self.output_file.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Save using wave module for compatibility
|
||||
with wave.open(str(self.output_file), 'wb') as wav_file:
|
||||
wav_file.setnchannels(1)
|
||||
wav_file.setsampwidth(2) # 16-bit
|
||||
wav_file.setframerate(self.sample_rate)
|
||||
wav_file.writeframes(audio_data.tobytes())
|
||||
|
||||
duration = len(audio_data) / self.sample_rate
|
||||
self.log_event("→", f"Saved output: {self.output_file}")
|
||||
self.log_event("→", f" Duration: {duration:.2f}s ({len(audio_data)} samples)")
|
||||
self.log_event("→", f" Size: {len(self.received_audio)/1024:.1f} KB")
|
||||
|
||||
async def run(self) -> None:
|
||||
"""Run the WAV file test."""
|
||||
try:
|
||||
# Load input WAV file
|
||||
audio_data, _ = self.load_wav_file()
|
||||
|
||||
# Connect to server
|
||||
await self.connect()
|
||||
|
||||
# Wait for answer
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
# Start receiver task
|
||||
receiver_task = asyncio.create_task(self.receiver())
|
||||
|
||||
# Send audio
|
||||
await self.audio_sender(audio_data)
|
||||
|
||||
# Wait for response
|
||||
self.log_event("→", f"Waiting {self.wait_time}s for response...")
|
||||
|
||||
wait_start = time.time()
|
||||
while self.running and (time.time() - wait_start) < self.wait_time:
|
||||
# Check if track has ended (response complete)
|
||||
if self.track_ended and self.send_completed:
|
||||
# Give a little extra time for any remaining audio
|
||||
await asyncio.sleep(1.0)
|
||||
break
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
# Cleanup
|
||||
self.running = False
|
||||
receiver_task.cancel()
|
||||
|
||||
try:
|
||||
await receiver_task
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
# Save output
|
||||
self.save_output_wav()
|
||||
|
||||
# Print summary
|
||||
self._print_summary()
|
||||
|
||||
except FileNotFoundError as e:
|
||||
print(f"Error: {e}")
|
||||
sys.exit(1)
|
||||
except ConnectionRefusedError:
|
||||
print(f"Error: Could not connect to {self.url}")
|
||||
print("Make sure the server is running.")
|
||||
sys.exit(1)
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
sys.exit(1)
|
||||
finally:
|
||||
await self.close()
|
||||
|
||||
def _print_summary(self):
|
||||
"""Print session summary."""
|
||||
print("\n" + "=" * 50)
|
||||
print("Session Summary")
|
||||
print("=" * 50)
|
||||
print(f" Input file: {self.input_file}")
|
||||
print(f" Output file: {self.output_file}")
|
||||
print(f" Bytes sent: {self.bytes_sent / 1024:.1f} KB")
|
||||
print(f" Bytes received: {self.bytes_received / 1024:.1f} KB")
|
||||
if self.ttfb_ms:
|
||||
print(f" TTFB: {self.ttfb_ms:.0f} ms")
|
||||
if self.received_audio:
|
||||
duration = len(self.received_audio) / (self.sample_rate * 2)
|
||||
print(f" Response duration: {duration:.2f}s")
|
||||
print("=" * 50)
|
||||
|
||||
async def close(self) -> None:
|
||||
"""Close the connection."""
|
||||
self.running = False
|
||||
if self.ws:
|
||||
try:
|
||||
await self.ws.close()
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
async def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="WAV file client for testing duplex voice conversation"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input", "-i",
|
||||
required=True,
|
||||
help="Input WAV file path"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output", "-o",
|
||||
required=True,
|
||||
help="Output WAV file path for response"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--url",
|
||||
default="ws://localhost:8000/ws",
|
||||
help="WebSocket server URL (default: ws://localhost:8000/ws)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="Target sample rate for audio (default: 16000)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chunk-duration",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Chunk duration in ms for sending (default: 20)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--wait-time", "-w",
|
||||
type=float,
|
||||
default=15.0,
|
||||
help="Time to wait for response after sending (default: 15.0)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose", "-v",
|
||||
action="store_true",
|
||||
help="Enable verbose output"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
client = WavFileClient(
|
||||
url=args.url,
|
||||
input_file=args.input,
|
||||
output_file=args.output,
|
||||
sample_rate=args.sample_rate,
|
||||
chunk_duration_ms=args.chunk_duration,
|
||||
wait_time=args.wait_time,
|
||||
verbose=args.verbose
|
||||
)
|
||||
|
||||
await client.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
asyncio.run(main())
|
||||
except KeyboardInterrupt:
|
||||
print("\nInterrupted by user")
|
||||
1
scripts/README.md
Normal file
1
scripts/README.md
Normal file
@@ -0,0 +1 @@
|
||||
# Development Script
|
||||
312
scripts/generate_test_audio/generate_test_audio.py
Normal file
312
scripts/generate_test_audio/generate_test_audio.py
Normal file
@@ -0,0 +1,312 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Generate test audio file with utterances using SiliconFlow TTS API.
|
||||
|
||||
Creates a 16kHz mono WAV file with real speech segments separated by
|
||||
configurable silence (for VAD/testing).
|
||||
|
||||
Usage:
|
||||
python scripts/generate_test_audio.py [OPTIONS]
|
||||
|
||||
Options:
|
||||
-o, --output PATH Output WAV path (default: data/audio_examples/two_utterances_16k.wav)
|
||||
-u, --utterance TEXT Utterance text; repeat for multiple (ignored if -j is set)
|
||||
-j, --json PATH JSON file: array of strings or {"utterances": [...]}
|
||||
--silence-ms MS Silence in ms between utterances (default: 500)
|
||||
--lead-silence-ms MS Silence in ms at start (default: 200)
|
||||
--trail-silence-ms MS Silence in ms at end (default: 300)
|
||||
|
||||
Examples:
|
||||
# Default utterances and output
|
||||
python scripts/generate_test_audio.py
|
||||
|
||||
# Custom output path
|
||||
python scripts/generate_test_audio.py -o out.wav
|
||||
|
||||
# Utterances from command line
|
||||
python scripts/generate_test_audio.py -u "Hello" -u "World" -o test.wav
|
||||
|
||||
# Utterances from JSON file
|
||||
python scripts/generate_test_audio.py -j utterances.json -o test.wav
|
||||
|
||||
# Custom silence (1s between utterances)
|
||||
python scripts/generate_test_audio.py -u "One" -u "Two" --silence-ms 1000 -o test.wav
|
||||
|
||||
Requires SILICONFLOW_API_KEY in .env.
|
||||
"""
|
||||
|
||||
import wave
|
||||
import struct
|
||||
import argparse
|
||||
import asyncio
|
||||
import aiohttp
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
from dotenv import load_dotenv
|
||||
|
||||
|
||||
# Load .env file from project root
|
||||
project_root = Path(__file__).parent.parent
|
||||
load_dotenv(project_root / ".env")
|
||||
|
||||
|
||||
# SiliconFlow TTS Configuration
|
||||
SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/audio/speech"
|
||||
SILICONFLOW_MODEL = "FunAudioLLM/CosyVoice2-0.5B"
|
||||
|
||||
# Available voices
|
||||
VOICES = {
|
||||
"alex": "FunAudioLLM/CosyVoice2-0.5B:alex",
|
||||
"anna": "FunAudioLLM/CosyVoice2-0.5B:anna",
|
||||
"bella": "FunAudioLLM/CosyVoice2-0.5B:bella",
|
||||
"benjamin": "FunAudioLLM/CosyVoice2-0.5B:benjamin",
|
||||
"charles": "FunAudioLLM/CosyVoice2-0.5B:charles",
|
||||
"claire": "FunAudioLLM/CosyVoice2-0.5B:claire",
|
||||
"david": "FunAudioLLM/CosyVoice2-0.5B:david",
|
||||
"diana": "FunAudioLLM/CosyVoice2-0.5B:diana",
|
||||
}
|
||||
|
||||
|
||||
def generate_silence(duration_ms: int, sample_rate: int = 16000) -> bytes:
|
||||
"""Generate silence as PCM bytes."""
|
||||
num_samples = int(sample_rate * (duration_ms / 1000.0))
|
||||
return b'\x00\x00' * num_samples
|
||||
|
||||
|
||||
async def synthesize_speech(
|
||||
text: str,
|
||||
api_key: str,
|
||||
voice: str = "anna",
|
||||
sample_rate: int = 16000,
|
||||
speed: float = 1.0
|
||||
) -> bytes:
|
||||
"""
|
||||
Synthesize speech using SiliconFlow TTS API.
|
||||
|
||||
Args:
|
||||
text: Text to synthesize
|
||||
api_key: SiliconFlow API key
|
||||
voice: Voice name (alex, anna, bella, benjamin, charles, claire, david, diana)
|
||||
sample_rate: Output sample rate (8000, 16000, 24000, 32000, 44100)
|
||||
speed: Speech speed (0.25 to 4.0)
|
||||
|
||||
Returns:
|
||||
PCM audio bytes (16-bit signed, little-endian)
|
||||
"""
|
||||
# Resolve voice name
|
||||
full_voice = VOICES.get(voice, voice)
|
||||
|
||||
payload = {
|
||||
"model": SILICONFLOW_MODEL,
|
||||
"input": text,
|
||||
"voice": full_voice,
|
||||
"response_format": "pcm",
|
||||
"sample_rate": sample_rate,
|
||||
"stream": False,
|
||||
"speed": speed
|
||||
}
|
||||
|
||||
headers = {
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(SILICONFLOW_API_URL, json=payload, headers=headers) as response:
|
||||
if response.status != 200:
|
||||
error_text = await response.text()
|
||||
raise RuntimeError(f"SiliconFlow TTS error: {response.status} - {error_text}")
|
||||
|
||||
return await response.read()
|
||||
|
||||
|
||||
async def generate_test_audio(
|
||||
output_path: str,
|
||||
utterances: list[str],
|
||||
silence_ms: int = 500,
|
||||
lead_silence_ms: int = 200,
|
||||
trail_silence_ms: int = 300,
|
||||
voice: str = "anna",
|
||||
sample_rate: int = 16000,
|
||||
speed: float = 1.0
|
||||
):
|
||||
"""
|
||||
Generate test audio with multiple utterances separated by silence.
|
||||
|
||||
Args:
|
||||
output_path: Path to save the WAV file
|
||||
utterances: List of text strings for each utterance
|
||||
silence_ms: Silence duration between utterances (milliseconds)
|
||||
lead_silence_ms: Silence at the beginning (milliseconds)
|
||||
trail_silence_ms: Silence at the end (milliseconds)
|
||||
voice: TTS voice to use
|
||||
sample_rate: Audio sample rate
|
||||
speed: TTS speech speed
|
||||
"""
|
||||
api_key = os.getenv("SILICONFLOW_API_KEY")
|
||||
if not api_key:
|
||||
raise ValueError(
|
||||
"SILICONFLOW_API_KEY not found in environment.\n"
|
||||
"Please set it in your .env file:\n"
|
||||
" SILICONFLOW_API_KEY=your-api-key-here"
|
||||
)
|
||||
|
||||
print(f"Using SiliconFlow TTS API")
|
||||
print(f" Voice: {voice}")
|
||||
print(f" Sample rate: {sample_rate}Hz")
|
||||
print(f" Speed: {speed}x")
|
||||
print()
|
||||
|
||||
segments = []
|
||||
|
||||
# Lead-in silence
|
||||
if lead_silence_ms > 0:
|
||||
segments.append(generate_silence(lead_silence_ms, sample_rate))
|
||||
print(f" [silence: {lead_silence_ms}ms]")
|
||||
|
||||
# Generate each utterance with silence between
|
||||
for i, text in enumerate(utterances):
|
||||
print(f" Synthesizing utterance {i + 1}: \"{text}\"")
|
||||
audio = await synthesize_speech(
|
||||
text=text,
|
||||
api_key=api_key,
|
||||
voice=voice,
|
||||
sample_rate=sample_rate,
|
||||
speed=speed
|
||||
)
|
||||
segments.append(audio)
|
||||
|
||||
# Add silence between utterances (not after the last one)
|
||||
if i < len(utterances) - 1:
|
||||
segments.append(generate_silence(silence_ms, sample_rate))
|
||||
print(f" [silence: {silence_ms}ms]")
|
||||
|
||||
# Trail silence
|
||||
if trail_silence_ms > 0:
|
||||
segments.append(generate_silence(trail_silence_ms, sample_rate))
|
||||
print(f" [silence: {trail_silence_ms}ms]")
|
||||
|
||||
# Concatenate all segments
|
||||
audio_data = b''.join(segments)
|
||||
|
||||
# Write WAV file
|
||||
with wave.open(output_path, 'wb') as wf:
|
||||
wf.setnchannels(1) # Mono
|
||||
wf.setsampwidth(2) # 16-bit
|
||||
wf.setframerate(sample_rate)
|
||||
wf.writeframes(audio_data)
|
||||
|
||||
duration_sec = len(audio_data) / (sample_rate * 2)
|
||||
print()
|
||||
print(f"Generated: {output_path}")
|
||||
print(f" Duration: {duration_sec:.2f}s")
|
||||
print(f" Sample rate: {sample_rate}Hz")
|
||||
print(f" Format: 16-bit mono PCM WAV")
|
||||
print(f" Size: {len(audio_data):,} bytes")
|
||||
|
||||
|
||||
def load_utterances_from_json(path: Path) -> list[str]:
|
||||
"""
|
||||
Load utterances from a JSON file.
|
||||
|
||||
Accepts either:
|
||||
- A JSON array: ["utterance 1", "utterance 2"]
|
||||
- A JSON object with "utterances" key: {"utterances": ["a", "b"]}
|
||||
"""
|
||||
with open(path, encoding="utf-8") as f:
|
||||
data = json.load(f)
|
||||
if isinstance(data, list):
|
||||
return [str(s) for s in data]
|
||||
if isinstance(data, dict) and "utterances" in data:
|
||||
return [str(s) for s in data["utterances"]]
|
||||
raise ValueError(
|
||||
f"JSON file must be an array of strings or an object with 'utterances' key. "
|
||||
f"Got: {type(data).__name__}"
|
||||
)
|
||||
|
||||
|
||||
def parse_args():
|
||||
"""Parse command-line arguments."""
|
||||
script_dir = Path(__file__).parent
|
||||
default_output = script_dir.parent / "data" / "audio_examples" / "two_utterances_16k.wav"
|
||||
|
||||
parser = argparse.ArgumentParser(description="Generate test audio with SiliconFlow TTS (utterances + silence).")
|
||||
parser.add_argument(
|
||||
"-o", "--output",
|
||||
type=Path,
|
||||
default=default_output,
|
||||
help=f"Output WAV file path (default: {default_output})"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-u", "--utterance",
|
||||
action="append",
|
||||
dest="utterances",
|
||||
metavar="TEXT",
|
||||
help="Utterance text (repeat for multiple). Ignored if --json is set."
|
||||
)
|
||||
parser.add_argument(
|
||||
"-j", "--json",
|
||||
type=Path,
|
||||
metavar="PATH",
|
||||
help="JSON file with utterances: array of strings or object with 'utterances' key"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--silence-ms",
|
||||
type=int,
|
||||
default=500,
|
||||
metavar="MS",
|
||||
help="Silence in ms between utterances (default: 500)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lead-silence-ms",
|
||||
type=int,
|
||||
default=200,
|
||||
metavar="MS",
|
||||
help="Silence in ms at start of file (default: 200)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--trail-silence-ms",
|
||||
type=int,
|
||||
default=300,
|
||||
metavar="MS",
|
||||
help="Silence in ms at end of file (default: 300)"
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
async def main():
|
||||
"""Main entry point."""
|
||||
args = parse_args()
|
||||
output_path = args.output
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Resolve utterances: JSON file > -u args > defaults
|
||||
if args.json is not None:
|
||||
if not args.json.is_file():
|
||||
raise FileNotFoundError(f"Utterances JSON file not found: {args.json}")
|
||||
utterances = load_utterances_from_json(args.json)
|
||||
if not utterances:
|
||||
raise ValueError(f"JSON file has no utterances: {args.json}")
|
||||
elif args.utterances:
|
||||
utterances = args.utterances
|
||||
else:
|
||||
utterances = [
|
||||
"Hello, how are you doing today?",
|
||||
"I'm doing great, thank you for asking!"
|
||||
]
|
||||
|
||||
await generate_test_audio(
|
||||
output_path=str(output_path),
|
||||
utterances=utterances,
|
||||
silence_ms=args.silence_ms,
|
||||
lead_silence_ms=args.lead_silence_ms,
|
||||
trail_silence_ms=args.trail_silence_ms,
|
||||
voice="anna",
|
||||
sample_rate=16000,
|
||||
speed=1.0
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
Reference in New Issue
Block a user