fix long run bug

This commit is contained in:
Xin Wang
2026-02-03 12:05:09 +08:00
parent a2e341b433
commit 8bc24ded59
6 changed files with 343 additions and 11 deletions

View File

@@ -5,3 +5,21 @@ Python Active-Call: real-time audio streaming with WebSocket and WebRTC.
This repo contains a Python 3.11+ codebase for building low-latency voice
pipelines (capture, stream, and process audio) using WebRTC and WebSockets.
It is currently in an early, experimental stage.
# Usage
启动
```
uvicorn app.main:app --reload --host 0.0.0.0 --port 8000
```
测试
```
python examples/test_websocket.py
```
```
python mic_client.py
```

View File

@@ -113,6 +113,10 @@ class DuplexPipeline:
# Interruption handling
self._interrupt_event = asyncio.Event()
# Latency tracking - TTFB (Time to First Byte)
self._turn_start_time: Optional[float] = None
self._first_audio_sent: bool = False
# Barge-in filtering - require minimum speech duration to interrupt
self._barge_in_speech_start_time: Optional[float] = None
self._barge_in_min_duration_ms: int = settings.barge_in_min_duration_ms if hasattr(settings, 'barge_in_min_duration_ms') else 50
@@ -396,6 +400,10 @@ class DuplexPipeline:
user_text: User's transcribed text
"""
try:
# Start latency tracking
self._turn_start_time = time.time()
self._first_audio_sent = False
# Get AI response (streaming)
messages = self.conversation.get_messages()
full_response = ""
@@ -495,10 +503,33 @@ class DuplexPipeline:
try:
async for chunk in self.tts_service.synthesize_stream(text):
# Check interrupt at the start of each iteration
if self._interrupt_event.is_set():
logger.debug("TTS sentence interrupted")
break
# Track and log first audio packet latency (TTFB)
if not self._first_audio_sent and self._turn_start_time:
ttfb_ms = (time.time() - self._turn_start_time) * 1000
self._first_audio_sent = True
logger.info(f"[TTFB] Server first audio packet latency: {ttfb_ms:.0f}ms (session {self.session_id})")
# Send TTFB event to client
await self.transport.send_event({
"event": "ttfb",
"trackId": self.session_id,
"timestamp": self._get_timestamp_ms(),
"latencyMs": round(ttfb_ms)
})
# Double-check interrupt right before sending audio
if self._interrupt_event.is_set():
break
await self.transport.send_audio(chunk.audio)
await asyncio.sleep(0.005) # Small delay to prevent flooding
except asyncio.CancelledError:
logger.debug("TTS sentence cancelled")
except Exception as e:
logger.error(f"TTS sentence error: {e}")
@@ -513,6 +544,10 @@ class DuplexPipeline:
return
try:
# Start latency tracking for greeting
speak_start_time = time.time()
first_audio_sent = False
# Send track start event
await self.transport.send_event({
"event": "trackStart",
@@ -528,6 +563,20 @@ class DuplexPipeline:
logger.info("TTS interrupted by barge-in")
break
# Track and log first audio packet latency (TTFB)
if not first_audio_sent:
ttfb_ms = (time.time() - speak_start_time) * 1000
first_audio_sent = True
logger.info(f"[TTFB] Greeting first audio packet latency: {ttfb_ms:.0f}ms (session {self.session_id})")
# Send TTFB event to client
await self.transport.send_event({
"event": "ttfb",
"trackId": self.session_id,
"timestamp": self._get_timestamp_ms(),
"latencyMs": round(ttfb_ms)
})
# Send audio to client
await self.transport.send_audio(chunk.audio)
@@ -561,8 +610,17 @@ class DuplexPipeline:
self._barge_in_speech_frames = 0
self._barge_in_silence_frames = 0
# Signal interruption
# IMPORTANT: Signal interruption FIRST to stop audio sending
self._interrupt_event.set()
self._is_bot_speaking = False
# Send interrupt event to client IMMEDIATELY
# This must happen BEFORE canceling services, so client knows to discard in-flight audio
await self.transport.send_event({
"event": "interrupt",
"trackId": self.session_id,
"timestamp": self._get_timestamp_ms()
})
# Cancel TTS
if self.tts_service:
@@ -575,15 +633,7 @@ class DuplexPipeline:
# Interrupt conversation
await self.conversation.interrupt()
# Send interrupt event to client
await self.transport.send_event({
"event": "interrupt",
"trackId": self.session_id,
"timestamp": self._get_timestamp_ms()
})
# Reset for new user turn
self._is_bot_speaking = False
await self.conversation.start_user_turn()
self._audio_buffer = b""
self.eou_detector.reset()

187
docs/proejct_todo.md Normal file
View File

@@ -0,0 +1,187 @@
# OmniSense: 12-Week Sprint Board + Tech Stack (Python Backend) — TODO
## Scope
- [ ] Build a realtime AI SaaS (OmniSense) focused on web-first audio + video with WebSocket + WebRTC endpoints
- [ ] Deliver assistant builder, tool execution, observability, evals, optional telephony later
- [ ] Keep scope aligned to 2-person team, self-hosted services
---
## Sprint Board (12 weeks, 2-week sprints)
Team assumption: 2 engineers. Scope prioritized to web-first audio + video, with BYO-SFU adapters.
### Sprint 1 (Weeks 12) — Realtime Core MVP (WebSocket + WebRTC Audio)
- Deliverables
- [ ] WebSocket transport: audio in/out streaming (1:1)
- [ ] WebRTC transport: audio in/out streaming (1:1)
- [ ] Adapter contract wired into runtime (transport-agnostic session core)
- [ ] ASR → LLM → TTS pipeline, streaming both directions
- [ ] Basic session state (start/stop, silence timeout)
- [ ] Transcript persistence
- Acceptance criteria
- [ ] < 1.5s median round-trip for short responses
- [ ] Stable streaming for 10+ minute session
### Sprint 2 (Weeks 34) — Video + Realtime UX
- Deliverables
- [ ] WebRTC video capture + streaming (assistant can “see” frames)
- [ ] WebSocket video streaming for local/dev mode
- [ ] Low-latency UI: push-to-talk, live captions, speaking indicator
- [ ] Recording + transcript storage (web sessions)
- Acceptance criteria
- [ ] Video < 2.5s end-to-end latency for analysis
- [ ] Audio quality acceptable (no clipping, jitter handling)
### Sprint 3 (Weeks 56) — Assistant Builder v1
- Deliverables
- [ ] Assistant schema + versioning
- [ ] UI: Model/Voice/Transcriber/Tools/Video/Transport tabs
- [ ] “Test/Chat/Talk to Assistant” (web)
- Acceptance criteria
- [ ] Create/publish assistant and run a live web session
- [ ] All config changes tracked by version
### Sprint 4 (Weeks 78) — Tooling + Structured Outputs
- Deliverables
- [ ] Tool registry + custom HTTP tools
- [ ] Tool auth secrets management
- [ ] Structured outputs (JSON extraction)
- Acceptance criteria
- [ ] Tool calls executed with retries/timeouts
- [ ] Structured JSON stored per call/session
### Sprint 5 (Weeks 910) — Observability + QA + Dev Platform
- Deliverables
- [ ] Session logs + chat logs + media logs
- [ ] Evals engine + test suites
- [ ] Basic analytics dashboard
- [ ] Public WebSocket API spec + message schema
- [ ] JS/TS SDK (connect, send audio/video, receive transcripts)
- Acceptance criteria
- [ ] Reproducible test suite runs
- [ ] Log filters by assistant/time/status
- [ ] SDK demo app runs end-to-end
### Sprint 6 (Weeks 1112) — SaaS Hardening
- Deliverables
- [ ] Org/RBAC + API keys + rate limits
- [ ] Usage metering + credits
- [ ] Stripe billing integration
- [ ] Self-hosted DB ops (migrations, backup/restore, monitoring)
- Acceptance criteria
- [ ] Metered usage per org
- [ ] Credits decrement correctly
- [ ] Optional telephony spike documented (defer build)
- [ ] Enterprise adapter guide published (BYO-SFU)
---
## Tech Stack by Service (Self-Hosted, Web-First)
### 1) Transport Gateway (Realtime)
- [ ] WebRTC (browser) + WebSocket (lightweight/dev) protocols
- [ ] BYO-SFU adapter (enterprise) + LiveKit optional adapter + WS transport server
- [ ] Python core (FastAPI + asyncio) + Node.js mediasoup adapters when needed
- [ ] Media: Opus/VP8, jitter buffer, VAD, echo cancellation
- [ ] Storage: S3-compatible (MinIO) for recordings
### 2) ASR Service
- [ ] Whisper (self-hosted) baseline
- [ ] gRPC/WebSocket streaming transport
- [ ] Python native service
- [ ] Optional cloud provider fallback (later)
### 3) TTS Service
- [ ] Piper or Coqui TTS (self-hosted)
- [ ] gRPC/WebSocket streaming transport
- [ ] Python native service
- [ ] Redis cache for common phrases
### 4) LLM Orchestrator
- [ ] Self-hosted (vLLM + open model)
- [ ] Python (FastAPI + asyncio)
- [ ] Streaming, tool calling, JSON mode
- [ ] Safety filters + prompt templates
### 5) Assistant Config Service
- [ ] PostgreSQL
- [ ] Python (SQLAlchemy or SQLModel)
- [ ] Versioning, publish/rollback
### 6) Session Service
- [ ] PostgreSQL + Redis
- [ ] Python
- [ ] State machine, timeouts, events
### 7) Tool Execution Layer
- [ ] PostgreSQL
- [ ] Python
- [ ] Auth secret vault, retry policies, tool schemas
### 8) Observability + Logs
- [ ] Postgres (metadata), ClickHouse (logs/metrics)
- [ ] OpenSearch for search
- [ ] Prometheus + Grafana metrics
- [ ] OpenTelemetry tracing
### 9) Billing + Usage Metering
- [ ] Stripe billing
- [ ] PostgreSQL
- [ ] NATS JetStream (events) + Redis counters
### 10) Web App (Dashboard)
- [ ] React + Next.js
- [ ] Tailwind or Radix UI
- [ ] WebRTC client + WS client; adapter-based RTC integration
- [ ] ECharts/Recharts
### 11) Auth + RBAC
- [ ] Keycloak (self-hosted) or custom JWT
- [ ] Org/user/role tables in Postgres
### 12) Public WebSocket API + SDK
- [ ] WS API: versioned schema, binary audio frames + JSON control messages
- [ ] SDKs: JS/TS first, optional Python/Go clients
- [ ] Docs: quickstart, auth flow, session lifecycle, examples
---
## Infrastructure (Self-Hosted)
- [ ] Docker Compose → k3s (later)
- [ ] Redis Streams or NATS
- [ ] MinIO object store
- [ ] GitHub Actions + Helm or kustomize
- [ ] Self-hosted Postgres + pgbackrest backups
- [ ] Vault for secrets
---
## Suggested MVP Sequence
- [ ] WebRTC demo + ASR/LLM/TTS streaming
- [ ] Assistant schema + versioning (web-first)
- [ ] Video capture + multimodal analysis
- [ ] Tool execution + structured outputs
- [ ] Logs + evals + public WS API + SDK
- [ ] Telephony (optional, later)
---
## Public WebSocket API (Minimum Spec)
- [ ] Auth: API key or JWT in initial `hello` message
- [ ] Core messages: `session.start`, `session.stop`, `audio.append`, `audio.commit`, `video.append`, `transcript.delta`, `assistant.response`, `tool.call`, `tool.result`, `error`
- [ ] Binary payloads: PCM/Opus frames with metadata in control channel
- [ ] Versioning: `v1` schema with backward compatibility rules
---
## Self-Hosted DB Ops Checklist
- [ ] Postgres in Docker/k3s with persistent volumes
- [ ] Migrations: `alembic` or `atlas`
- [ ] Backups: `pgbackrest` nightly + on-demand
- [ ] Monitoring: postgres_exporter + alerts
---
## RTC Adapter Contract (BYO-SFU First)
- [ ] Keep RTC pluggable; LiveKit optional, not core dependency
- [ ] Define adapter interface (TypeScript sketch)

View File

@@ -17,6 +17,7 @@ import argparse
import asyncio
import json
import sys
import time
import threading
import queue
from pathlib import Path
@@ -92,6 +93,14 @@ class MicrophoneClient:
# State
self.is_recording = True
self.is_playing = True
# TTFB tracking (Time to First Byte)
self.request_start_time = None
self.first_audio_received = False
# Interrupt handling - discard audio until next trackStart
self._discard_audio = False
self._audio_sequence = 0 # Track audio sequence to detect stale chunks
async def connect(self) -> None:
"""Connect to WebSocket server."""
@@ -117,6 +126,10 @@ class MicrophoneClient:
async def send_chat(self, text: str) -> None:
"""Send chat message (text input)."""
# Reset TTFB tracking for new request
self.request_start_time = time.time()
self.first_audio_received = False
await self.send_command({
"command": "chat",
"text": text
@@ -236,9 +249,21 @@ class MicrophoneClient:
# Audio data received
self.bytes_received += len(message)
# Check if we should discard this audio (after interrupt)
if self._discard_audio:
duration_ms = len(message) / (self.sample_rate * 2) * 1000
print(f"← Audio: {duration_ms:.0f}ms (DISCARDED - waiting for new track)")
continue
if self.is_playing:
self._add_audio_to_buffer(message)
# Calculate and display TTFB for first audio packet
if not self.first_audio_received and self.request_start_time:
client_ttfb_ms = (time.time() - self.request_start_time) * 1000
self.first_audio_received = True
print(f"← [TTFB] Client first audio latency: {client_ttfb_ms:.0f}ms")
# Show progress (less verbose)
with self.audio_output_lock:
buffer_ms = len(self.audio_output_buffer) / (self.sample_rate * 2) * 1000
@@ -285,20 +310,36 @@ class MicrophoneClient:
# Interim result - show with indicator (overwrite same line)
display_text = text[:60] + "..." if len(text) > 60 else text
print(f" [listening] {display_text}".ljust(80), end="\r")
elif event_type == "ttfb":
# Server-side TTFB event
latency_ms = event.get("latencyMs", 0)
print(f"← [TTFB] Server reported latency: {latency_ms}ms")
elif event_type == "trackStart":
print("← Bot started speaking")
# IMPORTANT: Accept audio again after trackStart
self._discard_audio = False
self._audio_sequence += 1
# Reset TTFB tracking for voice responses (when no chat was sent)
if self.request_start_time is None:
self.request_start_time = time.time()
self.first_audio_received = False
# Clear any old audio in buffer
with self.audio_output_lock:
self.audio_output_buffer = b""
elif event_type == "trackEnd":
print("← Bot finished speaking")
# Reset TTFB tracking after response completes
self.request_start_time = None
self.first_audio_received = False
elif event_type == "interrupt":
print("← Bot interrupted!")
# IMPORTANT: Clear audio buffer immediately on interrupt
# IMPORTANT: Discard all audio until next trackStart
self._discard_audio = True
# Clear audio buffer immediately
with self.audio_output_lock:
buffer_ms = len(self.audio_output_buffer) / (self.sample_rate * 2) * 1000
self.audio_output_buffer = b""
print(f" (cleared {buffer_ms:.0f}ms of buffered audio)")
print(f" (cleared {buffer_ms:.0f}ms, discarding audio until new track)")
elif event_type == "error":
print(f"← Error: {event.get('error')}")
elif event_type == "hangup":

View File

@@ -12,6 +12,7 @@ import argparse
import asyncio
import json
import sys
import time
import wave
import io
@@ -67,6 +68,13 @@ class SimpleVoiceClient:
# Stats
self.bytes_received = 0
# TTFB tracking (Time to First Byte)
self.request_start_time = None
self.first_audio_received = False
# Interrupt handling - discard audio until next trackStart
self._discard_audio = False
async def connect(self):
"""Connect to server."""
@@ -84,6 +92,10 @@ class SimpleVoiceClient:
async def send_chat(self, text: str):
"""Send chat message."""
# Reset TTFB tracking for new request
self.request_start_time = time.time()
self.first_audio_received = False
await self.ws.send(json.dumps({"command": "chat", "text": text}))
print(f"-> chat: {text}")
@@ -120,6 +132,18 @@ class SimpleVoiceClient:
# Audio data
self.bytes_received += len(msg)
duration_ms = len(msg) / (self.sample_rate * 2) * 1000
# Check if we should discard this audio (after interrupt)
if self._discard_audio:
print(f"<- audio: {len(msg)} bytes ({duration_ms:.0f}ms) [DISCARDED]")
continue
# Calculate and display TTFB for first audio packet
if not self.first_audio_received and self.request_start_time:
client_ttfb_ms = (time.time() - self.request_start_time) * 1000
self.first_audio_received = True
print(f"<- [TTFB] Client first audio latency: {client_ttfb_ms:.0f}ms")
print(f"<- audio: {len(msg)} bytes ({duration_ms:.0f}ms)")
# Play immediately in executor to not block
@@ -138,6 +162,18 @@ class SimpleVoiceClient:
print(f"<- You said: {text}")
else:
print(f"<- [listening] {text}", end="\r")
elif etype == "ttfb":
# Server-side TTFB event
latency_ms = event.get("latencyMs", 0)
print(f"<- [TTFB] Server reported latency: {latency_ms}ms")
elif etype == "trackStart":
# New track starting - accept audio again
self._discard_audio = False
print(f"<- {etype}")
elif etype == "interrupt":
# Interrupt - discard audio until next trackStart
self._discard_audio = True
print(f"<- {etype} (discarding audio until new track)")
elif etype == "hangup":
print(f"<- {etype}")
self.running = False