Initial commit: FastGPT Python SDK Phase 1

Implement core infrastructure:

- BaseClientMixin with retry logic and validation
- FastGPTClient base class with httpx
- ChatClient with 11 chat operation methods
- AppClient for analytics and logs
- Custom exceptions (APIError, AuthenticationError, etc.)
- Package configuration (pyproject.toml, setup.py)
- Documentation (README.md, CLAUDE.md)
- Basic usage examples

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
This commit is contained in:
Xin Wang
2026-01-06 14:38:32 +08:00
commit 0495dd4676
11 changed files with 1332 additions and 0 deletions

88
.gitignore vendored Normal file
View File

@@ -0,0 +1,88 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
PIPFILE.lock
# PyInstaller
*.manifest
*.spec
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# IDEs
.vscode/
.idea/
*.swp
*.swo
*~
# OS
.DS_Store
Thumbs.db
# Project specific
*.log
*.db
*.sqlite
# Python
.pytest_cache/
.mypy_cache/
.dmypy.json
dmypy.json
.pyre/
.pytype/
# Jupyter Notebook
.ipynb_checkpoints
# Ruff
.ruff_cache/
# uv
.uv_cache/

194
CLAUDE.md Normal file
View File

@@ -0,0 +1,194 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
This is the **FastGPT Python SDK**, a Python client library for interacting with FastGPT's OpenAPI. The SDK is designed following the architecture patterns from the [Dify Python SDK](https://github.com/langgenius/dify-python-sdk), adapted for FastGPT's API structure.
### Key Design Principles
1. **Base Client + Specialized Clients**: A `FastGPTClient` base class handles HTTP communication, retry logic, error handling, and validation. Specialized clients (`ChatClient`, `AppClient`) inherit from it.
2. **Synchronous + Asynchronous**: All clients have async variants using `httpx.AsyncClient`.
3. **Context Manager Support**: Clients should be usable with `with` statements for automatic resource cleanup.
4. **OpenAI-Compatible API**: FastGPT's `/api/v1/chat/completions` endpoint is OpenAI-compatible, but with FastGPT-specific extensions.
## API Architecture
### FastGPT API Structure
- **Base URL**: User-configured (default: `http://localhost:3000`)
- **Authentication**: `Authorization: Bearer {api_key}`
- **Chat Completions**: `/api/v1/chat/completions` (OpenAI-compatible)
- **Chat History**: `/api/core/chat/*` endpoints
- **App Analytics**: `/api/proApi/core/app/logs/*` endpoints
### Key Concepts
- **chatId**: Identifier for a conversation window (similar to Dify's `conversation_id`)
- **dataId**: Identifier for a specific message within a chat
- **appId**: Application identifier (from FastGPT app details URL)
- **variables**: Template variables that replace `[key]` placeholders in workflows
- **detail mode**: When `detail=true`, responses include `responseData` with module-level execution details
### SSE Event Types
FastGPT uses Server-Sent Events with multiple event types:
- `answer` - Main chat response content
- `fastAnswer` - Quick reply content
- `flowNodeStatus` - Workflow node status (`running`, `completed`, `error`)
- `flowResponses` - Complete node response data (module execution details)
- `interactive` - Interactive node (user input/form selection)
- `updateVariables` - Variable updates during execution
- `error` - Error events
- `toolCall`, `toolParams`, `toolResponse` - Tool/agent operations
## Project Structure
```
fastgpt-python-sdk/
├── fastgpt_client/
│ ├── __init__.py # Export all clients
│ ├── client.py # Base FastGPTClient
│ ├── async_client.py # AsyncFastGPTClient + async variants
│ ├── base_client.py # BaseClientMixin (retry, validation)
│ ├── chat_client.py # ChatClient (sync)
│ ├── app_client.py # AppClient for analytics/logs
│ ├── exceptions.py # Custom exceptions
│ └── utils/
│ ├── validation.py # Parameter validation
│ ├── response_parser.py # Parse SSE events
│ └── types.py # Type definitions
├── tests/
├── examples/
├── setup.py
├── pyproject.toml
└── README.md
```
## Client Classes
### FastGPTClient (Base)
- Uses `httpx.Client` for connection pooling
- Implements retry logic with configurable `max_retries` and `retry_delay`
- Custom exceptions: `APIError`, `AuthenticationError`, `RateLimitError`, `ValidationError`
- Parameter validation via `_validate_params()`
- Methods: `_send_request()`, `_handle_error_response()`, `close()`
### ChatClient
Inherits from `FastGPTClient`. Key methods:
- `create_chat_completion()` - Send messages (blocking/streaming), supports `chatId`, `variables`, `detail`
- `get_chat_histories()` - List chat histories for an app
- `get_chat_init()` - Get chat initialization info
- `get_chat_records()` - Get messages for a specific chat
- `get_record_detail()` - Get execution details for a message
- `update_chat_history()` - Update title or pin/unpin
- `delete_chat_history()` - Delete a chat
- `clear_chat_histories()` - Clear all histories
- `delete_chat_record()` - Delete a single message
- `send_feedback()` - Like/dislike a message
- `get_suggested_questions()` - Generate suggested questions
### AppClient
Inherits from `FastGPTClient`:
- `get_app_logs_chart()` - Analytics data (users, chats, app metrics)
- `get_app_info()` - App metadata
### Async Variants
- `AsyncFastGPTClient`, `AsyncChatClient`, `AsyncAppClient`
- All methods are `async def` and use `await`
- Use `async with` for context manager support
## Development Commands
```bash
# Install package in development mode
pip install -e .
# Run tests
pytest
# Run single test file
pytest tests/test_chat_client.py
# Run with coverage
pytest --cov=fastgpt_client
# Lint with ruff
ruff check fastgpt_client/
# Format with ruff
ruff format fastgpt_client/
```
## Key Differences from Dify SDK
| Aspect | Dify SDK | FastGPT SDK |
|--------|----------|-------------|
| Chat ID | `conversation_id` | `chatId` |
| Message input | `inputs` + `query` | `messages` array (OpenAI format) |
| Variables | `inputs` dict | `variables` dict + `messages` |
| Streaming events | Single `data:` type | Multiple `event:` types |
| Detail mode | N/A | `detail=true` returns `responseData` |
| Response format | Custom Dify format | OpenAI-compatible (`choices`, `usage`) |
## Request/Response Patterns
### Chat Completion Request
```python
{
"chatId": "optional_chat_id", # Omit for stateless, provide for context
"stream": false,
"detail": false,
"variables": {"key": "value"}, # Template variable substitution
"messages": [
{"role": "user", "content": "Hello"}
]
}
```
### Chat Completion Response (blocking, detail=false)
OpenAI-compatible format with `choices`, `usage`, `id`, `model`.
### Chat Completion Response (detail=true)
Includes `responseData` array with module execution details:
- `moduleName` - Node name
- `moduleType` - Node type (chatNode, datasetSearchNode, etc.)
- `tokens`, `price`, `runningTime`
- `quoteList` - Knowledge base citations
- `completeMessages` - Full context
### Interactive Node Response
When workflow hits an interactive node:
```python
{
"interactive": {
"type": "userSelect" | "userInput",
"params": {
"description": "...",
"userSelectOptions": [...], # for userSelect
"inputForm": [...] # for userInput
}
}
}
```
## References
- [FastGPT Chat API Documentation](https://doc.fastgpt.io/docs/introduction/development/openapi/chat)
- [FastGPT App Logs Documentation](https://doc.fastgpt.io/docs/introduction/development/openapi/app)
- [Dify Python SDK](https://github.com/langgenius/dify-python-sdk) (architecture reference)

183
README.md Normal file
View File

@@ -0,0 +1,183 @@
# FastGPT Python SDK
Python SDK for FastGPT OpenAPI.
## Installation
```bash
pip install fastgpt-client
```
## Quick Start
### Basic Chat Completion
```python
from fastgpt_client import ChatClient
# Initialize client
with ChatClient(api_key="fastgpt-xxxxx", base_url="http://localhost:3000") as client:
# Send a message
response = client.create_chat_completion(
messages=[{"role": "user", "content": "Hello!"}],
stream=False
)
response.raise_for_status()
result = response.json()
print(result['choices'][0]['message']['content'])
```
### Streaming Chat
```python
import json
with ChatClient(api_key="fastgpt-xxxxx") as client:
response = client.create_chat_completion(
messages=[{"role": "user", "content": "Tell me a story"}],
stream=True
)
for line in response.iter_lines():
if line.startswith("data:"):
data = line[5:].strip()
if data and data != "[DONE]":
chunk = json.loads(data)
if "choices" in chunk and chunk["choices"]:
delta = chunk["choices"][0].get("delta", {})
content = delta.get("content", "")
if content:
print(content, end="", flush=True)
```
### Chat with Context (chatId)
```python
with ChatClient(api_key="fastgpt-xxxxx") as client:
# First message
response = client.create_chat_completion(
messages=[{"role": "user", "content": "What's AI?"}],
chatId="my_conversation_123",
stream=False
)
# Second message (continues the conversation)
response = client.create_chat_completion(
messages=[{"role": "user", "content": "Tell me more"}],
chatId="my_conversation_123", # Same chatId
stream=False
)
```
### Using Variables
```python
with ChatClient(api_key="fastgpt-xxxxx") as client:
response = client.create_chat_completion(
messages=[{"role": "user", "content": "Hello [name]!"}],
variables={"name": "Alice"}, # Replaces [name] placeholder
stream=False
)
```
### Get Chat Histories
```python
with ChatClient(api_key="fastgpt-xxxxx") as client:
histories = client.get_chat_histories(
appId="your-app-id",
offset=0,
pageSize=20,
source="api"
)
histories.raise_for_status()
data = histories.json()
for chat in data['data']['list']:
print(f"{chat['title']}: {chat['chatId']}")
```
### Send Feedback
```python
with ChatClient(api_key="fastgpt-xxxxx") as client:
# Like a message
client.send_feedback(
appId="app-123",
chatId="chat-123",
dataId="msg-123",
userGoodFeedback="Great answer!"
)
# Dislike a message
client.send_feedback(
appId="app-123",
chatId="chat-123",
dataId="msg-123",
userBadFeedback="Not helpful"
)
```
### App Analytics
```python
from fastgpt_client import AppClient
with AppClient(api_key="fastgpt-xxxxx") as client:
logs = client.get_app_logs_chart(
appId="your-app-id",
dateStart="2024-01-01T00:00:00.000Z",
dateEnd="2024-12-31T23:59:59.999Z",
source=["api", "online"]
)
logs.raise_for_status()
print(logs.json())
```
## API Reference
### ChatClient
| Method | Description |
|--------|-------------|
| `create_chat_completion()` | Create chat completion (blocking/streaming) |
| `get_chat_histories()` | List chat histories for an app |
| `get_chat_init()` | Get chat initialization info |
| `get_chat_records()` | Get messages for a chat |
| `get_record_detail()` | Get execution details |
| `update_chat_history()` | Update title or pin status |
| `delete_chat_history()` | Delete a chat |
| `clear_chat_histories()` | Clear all chats |
| `delete_chat_record()` | Delete single record |
| `send_feedback()` | Like/dislike a message |
| `get_suggested_questions()` | Get suggested questions |
### AppClient
| Method | Description |
|--------|-------------|
| `get_app_logs_chart()` | Get app analytics data |
## Development
```bash
# Install in development mode
pip install -e ".[dev]"
# Run tests
pytest
# Lint
ruff check fastgpt_client/
# Format
ruff format fastgpt_client/
```
## License
MIT
## Links
- [FastGPT Documentation](https://doc.fastgpt.io/)
- [Chat API Documentation](https://doc.fastgpt.io/docs/introduction/development/openapi/chat)

4
examples/.env.example Normal file
View File

@@ -0,0 +1,4 @@
API_KEY=""
BASE_URL=""
CHAT_ID=""
APP_ID=""

125
examples/basic_usage.py Normal file
View File

@@ -0,0 +1,125 @@
"""Basic usage example for FastGPT Python SDK."""
from fastgpt_client import ChatClient
from dotenv import load_dotenv
import os
load_dotenv()
# Configure your API key and base URL
API_KEY = os.getenv("API_KEY")
BASE_URL = os.getenv("BASE_URL")
def simple_chat():
"""Simple chat completion example."""
with ChatClient(api_key=API_KEY, base_url=BASE_URL) as client:
response = client.create_chat_completion(
messages=[{"role": "user", "content": "Hello! What's AI?"}],
stream=False
)
response.raise_for_status()
result = response.json()
print("Response:", result['choices'][0]['message']['content'])
def streaming_chat():
"""Streaming chat completion example."""
import json
with ChatClient(api_key=API_KEY, base_url=BASE_URL) as client:
response = client.create_chat_completion(
messages=[{"role": "user", "content": "Tell me a short story"}],
stream=True
)
print("Streaming response: ", end="")
for line in response.iter_lines():
if line.startswith("data:"):
data = line[5:].strip()
if data and data != "[DONE]":
chunk = json.loads(data)
if "choices" in chunk and chunk["choices"]:
delta = chunk["choices"][0].get("delta", {})
content = delta.get("content", "")
if content:
print(content, end="", flush=True)
print()
def chat_with_context():
"""Chat with context using chatId example."""
with ChatClient(api_key=API_KEY, base_url=BASE_URL) as client:
chat_id = os.getenv("CHAT_ID")
# First message
print("User: What's AI?")
response = client.create_chat_completion(
messages=[{"role": "user", "content": "What's AI?"}],
chatId=chat_id,
stream=False
)
response.raise_for_status()
result = response.json()
print(f"AI: {result['choices'][0]['message']['content']}\n")
# Second message (continues the conversation)
print("User: Tell me more about it")
response = client.create_chat_completion(
messages=[{"role": "user", "content": "Tell me more about it"}],
chatId=chat_id, # Same chatId maintains context
stream=False
)
response.raise_for_status()
result = response.json()
print(f"AI: {result['choices'][0]['message']['content']}")
def get_histories():
"""Get chat histories example."""
with ChatClient(api_key=API_KEY, base_url=BASE_URL) as client:
# You need to replace this with your actual app ID
app_id = os.getenv("APP_ID")
try:
histories = client.get_chat_histories(
appId=app_id,
offset=0,
pageSize=20,
source="api"
)
histories.raise_for_status()
data = histories.json()
print(f"Total chats: {data['data']['total']}")
for chat in data['data']['list']:
print(f" - {chat['title']}: {chat['chatId']}")
except Exception as e:
print(f"Error: {e}")
if __name__ == "__main__":
print("=== Simple Chat ===")
try:
simple_chat()
except Exception as e:
print(f"Error: {e}")
print("\n=== Streaming Chat ===")
try:
streaming_chat()
except Exception as e:
print(f"Error: {e}")
print("\n=== Chat with Context ===")
try:
chat_with_context()
except Exception as e:
print(f"Error: {e}")
print("\n=== Get Histories ===")
try:
get_histories()
except Exception as e:
print(f"Error: {e}")

View File

@@ -0,0 +1,30 @@
"""FastGPT Python SDK
A Python client library for interacting with FastGPT's OpenAPI.
"""
from fastgpt_client.client import AppClient, ChatClient, FastGPTClient
from fastgpt_client.exceptions import (
APIError,
AuthenticationError,
FastGPTError,
RateLimitError,
StreamParseError,
ValidationError,
)
__all__ = [
# Synchronous clients
"FastGPTClient",
"ChatClient",
"AppClient",
# Exceptions
"FastGPTError",
"APIError",
"AuthenticationError",
"RateLimitError",
"ValidationError",
"StreamParseError",
]
__version__ = "0.1.0"

View File

@@ -0,0 +1,114 @@
"""Base client mixin with retry logic and validation."""
import logging
import time
from typing import Any
class BaseClientMixin:
"""Mixin class providing retry logic, validation, and logging for FastGPT clients."""
def __init__(
self,
api_key: str,
base_url: str,
timeout: float = 60.0,
max_retries: int = 3,
retry_delay: float = 1.0,
enable_logging: bool = False,
):
"""Initialize base client.
Args:
api_key: FastGPT API key
base_url: Base URL for FastGPT API
timeout: Request timeout in seconds
max_retries: Maximum number of retry attempts
retry_delay: Delay between retries in seconds
enable_logging: Whether to enable request logging
"""
self.api_key = api_key
self.base_url = base_url
self.timeout = timeout
self.max_retries = max_retries
self.retry_delay = retry_delay
self.enable_logging = enable_logging
self.logger = logging.getLogger(__name__)
def _validate_params(self, **params) -> None:
"""Validate request parameters.
Args:
**params: Parameters to validate
Raises:
ValidationError: If any parameter is invalid
"""
for key, value in params.items():
if value is None:
continue
# Check for empty strings that should be non-empty
if isinstance(value, str) and key in ("query", "chatId", "appId", "dataId", "content"):
if not value.strip():
from .exceptions import ValidationError
raise ValidationError(f"{key} must be a non-empty string")
# Check for valid lists/dicts
elif isinstance(value, (list, dict)) and not value:
# Empty lists/dicts are usually valid, but log for debugging
if self.enable_logging and self.logger.isEnabledFor(logging.DEBUG):
self.logger.debug(f"Parameter {key} is empty")
def _retry_request(self, request_func, request_context: str):
"""Execute a request with retry logic.
Args:
request_func: Function that executes the HTTP request
request_context: Description of the request for logging
Returns:
Response from the request
Raises:
APIError: If all retries are exhausted
"""
last_exception = None
for attempt in range(self.max_retries):
try:
response = request_func()
# Success on non-5xx responses
if response.status_code < 500:
return response
# Server error - will retry
if self.enable_logging:
self.logger.warning(
f"{request_context} failed with status {response.status_code} "
f"(attempt {attempt + 1}/{self.max_retries})"
)
if attempt < self.max_retries - 1:
# Exponential backoff
sleep_time = self.retry_delay * (2 ** attempt)
time.sleep(sleep_time)
except Exception as e:
last_exception = e
if self.enable_logging:
self.logger.warning(
f"{request_context} raised exception: {e} "
f"(attempt {attempt + 1}/{self.max_retries})"
)
if attempt < self.max_retries - 1:
sleep_time = self.retry_delay * (2 ** attempt)
time.sleep(sleep_time)
# All retries exhausted
if last_exception:
from .exceptions import APIError
raise APIError(f"Request failed after {self.max_retries} attempts: {last_exception}")
from .exceptions import APIError
raise APIError(f"Request failed after {self.max_retries} attempts")

487
fastgpt_client/client.py Normal file
View File

@@ -0,0 +1,487 @@
"""FastGPT Client - Main synchronous client."""
import logging
from typing import Any, Dict, Literal, Union
import httpx
from .base_client import BaseClientMixin
from .exceptions import APIError, AuthenticationError, RateLimitError, ValidationError
class FastGPTClient(BaseClientMixin):
"""Synchronous FastGPT API client.
This client uses httpx.Client for efficient connection pooling and resource management.
It's recommended to use this client as a context manager.
Example:
with FastGPTClient(api_key="your-key") as client:
response = client.get_app_info(app_id="app-123")
"""
def __init__(
self,
api_key: str,
base_url: str = "http://localhost:3000",
timeout: float = 60.0,
max_retries: int = 3,
retry_delay: float = 1.0,
enable_logging: bool = False,
):
"""Initialize the FastGPT client.
Args:
api_key: Your FastGPT API key
base_url: Base URL for the FastGPT API
timeout: Request timeout in seconds (default: 60.0)
max_retries: Maximum number of retry attempts (default: 3)
retry_delay: Delay between retries in seconds (default: 1.0)
enable_logging: Whether to enable request logging (default: False)
"""
# Initialize base client functionality
super().__init__(api_key, base_url, timeout, max_retries, retry_delay, enable_logging)
self._client = httpx.Client(
base_url=base_url,
timeout=httpx.Timeout(timeout, connect=5.0),
)
def __enter__(self):
"""Support context manager protocol."""
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Clean up resources when exiting context."""
self.close()
def close(self):
"""Close the HTTP client and release resources."""
if hasattr(self, "_client"):
self._client.close()
def _send_request(
self,
method: str,
endpoint: str,
json: Dict[str, Any] | None = None,
params: Dict[str, Any] | None = None,
stream: bool = False,
**kwargs,
):
"""Send an HTTP request to the FastGPT API with retry logic.
Args:
method: HTTP method (GET, POST, PUT, PATCH, DELETE)
endpoint: API endpoint path
json: JSON request body
params: Query parameters
stream: Whether to stream the response
**kwargs: Additional arguments to pass to httpx.request
Returns:
httpx.Response object
"""
# Validate parameters
if json:
self._validate_params(**json)
if params:
self._validate_params(**params)
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
def make_request():
"""Inner function to perform the actual HTTP request."""
# Log request if logging is enabled
if self.enable_logging:
self.logger.info(f"Sending {method} request to {endpoint}")
# Debug logging for detailed information
if self.logger.isEnabledFor(logging.DEBUG):
if json:
self.logger.debug(f"Request body: {json}")
if params:
self.logger.debug(f"Request params: {params}")
# httpx.Client automatically prepends base_url
response = self._client.request(
method,
endpoint,
json=json,
params=params,
headers=headers,
**kwargs,
)
# Log response if logging is enabled
if self.enable_logging:
self.logger.info(f"Received response: {response.status_code}")
return response
# Use the retry mechanism from base client
request_context = f"{method} {endpoint}"
response = self._retry_request(make_request, request_context)
# Handle error responses (API errors don't retry)
self._handle_error_response(response)
return response
def _handle_error_response(self, response) -> None:
"""Handle HTTP error responses and raise appropriate exceptions.
Args:
response: httpx.Response object
Raises:
AuthenticationError: If status code is 401
RateLimitError: If status code is 429
ValidationError: If status code is 422
APIError: For other 4xx and 5xx errors
"""
if response.status_code < 400:
return # Success response
try:
error_data = response.json()
message = error_data.get("message", f"HTTP {response.status_code}")
except (ValueError, KeyError):
message = f"HTTP {response.status_code}"
error_data = None
# Log error response if logging is enabled
if self.enable_logging:
self.logger.error(f"API error: {response.status_code} - {message}")
if response.status_code == 401:
raise AuthenticationError(message, response.status_code, error_data)
elif response.status_code == 429:
retry_after = response.headers.get("Retry-After")
raise RateLimitError(message, retry_after, response.status_code, error_data)
elif response.status_code == 422:
raise ValidationError(message, response.status_code, error_data)
elif response.status_code >= 400:
raise APIError(message, response.status_code, error_data)
class ChatClient(FastGPTClient):
"""Client for chat-related operations.
Example:
with ChatClient(api_key="fastgpt-xxxxx") as client:
response = client.create_chat_completion(
messages=[{"role": "user", "content": "Hello!"}],
stream=False
)
"""
def create_chat_completion(
self,
messages: list[dict],
stream: bool = False,
chatId: str | None = None,
detail: bool = False,
variables: dict[str, Any] | None = None,
responseChatItemId: str | None = None,
):
"""Create a chat completion.
Args:
messages: Array of message objects with role and content
stream: Whether to stream the response
chatId: Chat ID for conversation context (optional)
detail: Whether to return detailed response data
variables: Template variables for substitution
responseChatItemId: Custom ID for the response message
Returns:
httpx.Response object
"""
self._validate_params(messages=messages)
data = {
"messages": messages,
"stream": stream,
"detail": detail,
}
if chatId:
data["chatId"] = chatId
if variables:
data["variables"] = variables
if responseChatItemId:
data["responseChatItemId"] = responseChatItemId
return self._send_request(
"POST",
"/api/v1/chat/completions",
json=data,
stream=stream,
)
def get_chat_histories(
self,
appId: str,
offset: int = 0,
pageSize: int = 20,
source: Literal["api", "online", "share", "test"] = "api",
):
"""Get chat histories for an application.
Args:
appId: Application ID
offset: Offset for pagination
pageSize: Number of records per page
source: Source filter (api, online, share, test)
Returns:
httpx.Response object
"""
data = {
"appId": appId,
"offset": offset,
"pageSize": pageSize,
"source": source,
}
return self._send_request("POST", "/api/core/chat/getHistories", json=data)
def get_chat_init(self, appId: str, chatId: str):
"""Get chat initialization information.
Args:
appId: Application ID
chatId: Chat ID
Returns:
httpx.Response object
"""
params = {"appId": appId, "chatId": chatId}
return self._send_request("GET", "/api/core/chat/init", params=params)
def get_chat_records(
self,
appId: str,
chatId: str,
offset: int = 0,
pageSize: int = 10,
loadCustomFeedbacks: bool = False,
):
"""Get chat records for a specific chat.
Args:
appId: Application ID
chatId: Chat ID
offset: Offset for pagination
pageSize: Number of records per page
loadCustomFeedbacks: Whether to load custom feedbacks
Returns:
httpx.Response object
"""
data = {
"appId": appId,
"chatId": chatId,
"offset": offset,
"pageSize": pageSize,
"loadCustomFeedbacks": loadCustomFeedbacks,
}
return self._send_request("POST", "/api/core/chat/getPaginationRecords", json=data)
def get_record_detail(self, appId: str, chatId: str, dataId: str):
"""Get detailed execution data for a specific record.
Args:
appId: Application ID
chatId: Chat ID
dataId: Record ID
Returns:
httpx.Response object
"""
params = {"appId": appId, "chatId": chatId, "dataId": dataId}
return self._send_request("GET", "/api/core/chat/getResData", params=params)
def update_chat_history(
self,
appId: str,
chatId: str,
customTitle: str | None = None,
top: bool | None = None,
):
"""Update chat history (title or pin status).
Args:
appId: Application ID
chatId: Chat ID
customTitle: Custom title for the chat
top: Whether to pin the chat
Returns:
httpx.Response object
"""
data = {
"appId": appId,
"chatId": chatId,
}
if customTitle is not None:
data["customTitle"] = customTitle
if top is not None:
data["top"] = top
return self._send_request("POST", "/api/core/chat/updateHistory", json=data)
def delete_chat_history(self, appId: str, chatId: str):
"""Delete a chat history.
Args:
appId: Application ID
chatId: Chat ID
Returns:
httpx.Response object
"""
params = {"appId": appId, "chatId": chatId}
return self._send_request("DELETE", "/api/core/chat/delHistory", params=params)
def clear_chat_histories(self, appId: str):
"""Clear all chat histories for an application.
Args:
appId: Application ID
Returns:
httpx.Response object
"""
params = {"appId": appId}
return self._send_request("DELETE", "/api/core/chat/clearHistories", params=params)
def delete_chat_record(self, appId: str, chatId: str, contentId: str):
"""Delete a single chat record.
Args:
appId: Application ID
chatId: Chat ID
contentId: Content ID of the record
Returns:
httpx.Response object
"""
params = {"appId": appId, "chatId": chatId, "contentId": contentId}
return self._send_request("DELETE", "/api/core/chat/item/delete", params=params)
def send_feedback(
self,
appId: str,
chatId: str,
dataId: str,
userGoodFeedback: str | None = None,
userBadFeedback: str | None = None,
):
"""Send feedback for a chat message (like/dislike).
Args:
appId: Application ID
chatId: Chat ID
dataId: Message ID
userGoodFeedback: Positive feedback text (pass None to cancel like)
userBadFeedback: Negative feedback text (pass None to cancel dislike)
Returns:
httpx.Response object
"""
data = {
"appId": appId,
"chatId": chatId,
"dataId": dataId,
}
if userGoodFeedback is not None:
data["userGoodFeedback"] = userGoodFeedback
if userBadFeedback is not None:
data["userBadFeedback"] = userBadFeedback
return self._send_request("POST", "/api/core/chat/feedback/updateUserFeedback", json=data)
def get_suggested_questions(
self,
appId: str,
chatId: str,
questionGuide: dict[str, Any] | None = None,
):
"""Get suggested questions based on chat context.
Args:
appId: Application ID
chatId: Chat ID
questionGuide: Optional custom configuration for question guide
Returns:
httpx.Response object
"""
data = {
"appId": appId,
"chatId": chatId,
}
if questionGuide:
data["questionGuide"] = questionGuide
return self._send_request("POST", "/api/core/ai/agent/v2/createQuestionGuide", json=data)
class AppClient(FastGPTClient):
"""Client for application analytics and logs.
Example:
with AppClient(api_key="fastgpt-xxxxx") as client:
logs = client.get_app_logs_chart(appId="app-123")
"""
def get_app_logs_chart(
self,
appId: str,
dateStart: str,
dateEnd: str,
offset: int = 1,
source: list[str] | None = None,
userTimespan: str = "day",
chatTimespan: str = "day",
appTimespan: str = "day",
):
"""Get application analytics chart data.
Args:
appId: Application ID
dateStart: Start date (ISO 8601 format)
dateEnd: End date (ISO 8601 format)
offset: Offset value
source: List of sources (test, online, share, api, etc.)
userTimespan: User data timespan (day, week, month)
chatTimespan: Chat data timespan (day, week, month)
appTimespan: App data timespan (day, week, month)
Returns:
httpx.Response object
"""
if source is None:
source = ["api"]
data = {
"appId": appId,
"dateStart": dateStart,
"dateEnd": dateEnd,
"offset": offset,
"source": source,
"userTimespan": userTimespan,
"chatTimespan": chatTimespan,
"appTimespan": appTimespan,
}
return self._send_request("POST", "/api/proApi/core/app/logs/getChartData", json=data)

View File

@@ -0,0 +1,43 @@
"""FastGPT Client Exceptions."""
class FastGPTError(Exception):
"""Base exception for all FastGPT errors."""
def __init__(self, message: str, status_code: int = None, response_data: dict = None):
self.message = message
self.status_code = status_code
self.response_data = response_data or {}
super().__init__(self.message)
class APIError(FastGPTError):
"""General API error (4xx, 5xx responses)."""
pass
class AuthenticationError(FastGPTError):
"""Authentication failed (401)."""
pass
class RateLimitError(FastGPTError):
"""Rate limit exceeded (429)."""
def __init__(self, message: str, retry_after: str = None, status_code: int = None, response_data: dict = None):
super().__init__(message, status_code, response_data)
self.retry_after = retry_after
class ValidationError(FastGPTError):
"""Invalid request parameters (422)."""
pass
class StreamParseError(FastGPTError):
"""Error parsing streaming response."""
pass

59
pyproject.toml Normal file
View File

@@ -0,0 +1,59 @@
[build-system]
requires = ["setuptools>=68.0", "wheel"]
build-backend = "setuptools.build_meta"
[project]
name = "fastgpt-client"
version = "0.1.0"
description = "Python SDK for FastGPT OpenAPI"
readme = "README.md"
requires-python = ">=3.8"
license = {text = "MIT"}
authors = [
{name = "Your Name", email = "your.email@example.com"}
]
keywords = ["fastgpt", "ai", "chatbot", "llm", "openapi"]
classifiers = [
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Topic :: Software Development :: Libraries :: Python Modules",
]
dependencies = [
"httpx>=0.25.0",
]
[project.optional-dependencies]
dev = [
"pytest>=7.0",
"pytest-cov>=4.0",
"ruff>=0.1.0",
]
[project.urls]
Homepage = "https://github.com/yourusername/fastgpt-python-sdk"
Documentation = "https://github.com/yourusername/fastgpt-python-sdk#readme"
Repository = "https://github.com/yourusername/fastgpt-python-sdk"
Issues = "https://github.com/yourusername/fastgpt-python-sdk/issues"
[tool.setuptools.packages.find]
where = ["."]
include = ["fastgpt_client*"]
[tool.ruff]
line-length = 100
target-version = "py38"
[tool.ruff.lint]
select = ["E", "F", "I", "N", "W"]
ignore = ["E501"]
[tool.pytest.ini_options]
testpaths = ["tests"]
python_files = ["test_*.py"]

5
setup.py Normal file
View File

@@ -0,0 +1,5 @@
"""Setup configuration for fastgpt-client."""
from setuptools import setup
setup()