Add backend api and engine

This commit is contained in:
Xin Wang
2026-02-06 14:01:34 +08:00
parent 590014e821
commit d5c1ab34b3
61 changed files with 10351 additions and 1 deletions

View File

@@ -0,0 +1,311 @@
#!/usr/bin/env python3
"""
Generate test audio file with utterances using SiliconFlow TTS API.
Creates a 16kHz mono WAV file with real speech segments separated by
configurable silence (for VAD/testing).
Usage:
python generate_test_audio.py [OPTIONS]
Options:
-o, --output PATH Output WAV path (default: data/audio_examples/two_utterances_16k.wav)
-u, --utterance TEXT Utterance text; repeat for multiple (ignored if -j is set)
-j, --json PATH JSON file: array of strings or {"utterances": [...]}
--silence-ms MS Silence in ms between utterances (default: 500)
--lead-silence-ms MS Silence in ms at start (default: 200)
--trail-silence-ms MS Silence in ms at end (default: 300)
Examples:
# Default utterances and output
python generate_test_audio.py
# Custom output path
python generate_test_audio.py -o out.wav
# Utterances from command line
python generate_test_audio.py -u "Hello" -u "World" -o test.wav
# Utterancgenerate_test_audio.py -j utterances.json -o test.wav
# Custom silence (1s between utterances)
python generate_test_audio.py -u "One" -u "Two" --silence-ms 1000 -o test.wav
Requires SILICONFLOW_API_KEY in .env.
"""
import wave
import struct
import argparse
import asyncio
import aiohttp
import json
import os
from pathlib import Path
from dotenv import load_dotenv
# Load .env file from project root
project_root = Path(__file__).parent.parent.parent
load_dotenv(project_root / ".env")
# SiliconFlow TTS Configuration
SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/audio/speech"
SILICONFLOW_MODEL = "FunAudioLLM/CosyVoice2-0.5B"
# Available voices
VOICES = {
"alex": "FunAudioLLM/CosyVoice2-0.5B:alex",
"anna": "FunAudioLLM/CosyVoice2-0.5B:anna",
"bella": "FunAudioLLM/CosyVoice2-0.5B:bella",
"benjamin": "FunAudioLLM/CosyVoice2-0.5B:benjamin",
"charles": "FunAudioLLM/CosyVoice2-0.5B:charles",
"claire": "FunAudioLLM/CosyVoice2-0.5B:claire",
"david": "FunAudioLLM/CosyVoice2-0.5B:david",
"diana": "FunAudioLLM/CosyVoice2-0.5B:diana",
}
def generate_silence(duration_ms: int, sample_rate: int = 16000) -> bytes:
"""Generate silence as PCM bytes."""
num_samples = int(sample_rate * (duration_ms / 1000.0))
return b'\x00\x00' * num_samples
async def synthesize_speech(
text: str,
api_key: str,
voice: str = "anna",
sample_rate: int = 16000,
speed: float = 1.0
) -> bytes:
"""
Synthesize speech using SiliconFlow TTS API.
Args:
text: Text to synthesize
api_key: SiliconFlow API key
voice: Voice name (alex, anna, bella, benjamin, charles, claire, david, diana)
sample_rate: Output sample rate (8000, 16000, 24000, 32000, 44100)
speed: Speech speed (0.25 to 4.0)
Returns:
PCM audio bytes (16-bit signed, little-endian)
"""
# Resolve voice name
full_voice = VOICES.get(voice, voice)
payload = {
"model": SILICONFLOW_MODEL,
"input": text,
"voice": full_voice,
"response_format": "pcm",
"sample_rate": sample_rate,
"stream": False,
"speed": speed
}
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
async with aiohttp.ClientSession() as session:
async with session.post(SILICONFLOW_API_URL, json=payload, headers=headers) as response:
if response.status != 200:
error_text = await response.text()
raise RuntimeError(f"SiliconFlow TTS error: {response.status} - {error_text}")
return await response.read()
async def generate_test_audio(
output_path: str,
utterances: list[str],
silence_ms: int = 500,
lead_silence_ms: int = 200,
trail_silence_ms: int = 300,
voice: str = "anna",
sample_rate: int = 16000,
speed: float = 1.0
):
"""
Generate test audio with multiple utterances separated by silence.
Args:
output_path: Path to save the WAV file
utterances: List of text strings for each utterance
silence_ms: Silence duration between utterances (milliseconds)
lead_silence_ms: Silence at the beginning (milliseconds)
trail_silence_ms: Silence at the end (milliseconds)
voice: TTS voice to use
sample_rate: Audio sample rate
speed: TTS speech speed
"""
api_key = os.getenv("SILICONFLOW_API_KEY")
if not api_key:
raise ValueError(
"SILICONFLOW_API_KEY not found in environment.\n"
"Please set it in your .env file:\n"
" SILICONFLOW_API_KEY=your-api-key-here"
)
print(f"Using SiliconFlow TTS API")
print(f" Voice: {voice}")
print(f" Sample rate: {sample_rate}Hz")
print(f" Speed: {speed}x")
print()
segments = []
# Lead-in silence
if lead_silence_ms > 0:
segments.append(generate_silence(lead_silence_ms, sample_rate))
print(f" [silence: {lead_silence_ms}ms]")
# Generate each utterance with silence between
for i, text in enumerate(utterances):
print(f" Synthesizing utterance {i + 1}: \"{text}\"")
audio = await synthesize_speech(
text=text,
api_key=api_key,
voice=voice,
sample_rate=sample_rate,
speed=speed
)
segments.append(audio)
# Add silence between utterances (not after the last one)
if i < len(utterances) - 1:
segments.append(generate_silence(silence_ms, sample_rate))
print(f" [silence: {silence_ms}ms]")
# Trail silence
if trail_silence_ms > 0:
segments.append(generate_silence(trail_silence_ms, sample_rate))
print(f" [silence: {trail_silence_ms}ms]")
# Concatenate all segments
audio_data = b''.join(segments)
# Write WAV file
with wave.open(output_path, 'wb') as wf:
wf.setnchannels(1) # Mono
wf.setsampwidth(2) # 16-bit
wf.setframerate(sample_rate)
wf.writeframes(audio_data)
duration_sec = len(audio_data) / (sample_rate * 2)
print()
print(f"Generated: {output_path}")
print(f" Duration: {duration_sec:.2f}s")
print(f" Sample rate: {sample_rate}Hz")
print(f" Format: 16-bit mono PCM WAV")
print(f" Size: {len(audio_data):,} bytes")
def load_utterances_from_json(path: Path) -> list[str]:
"""
Load utterances from a JSON file.
Accepts either:
- A JSON array: ["utterance 1", "utterance 2"]
- A JSON object with "utterances" key: {"utterances": ["a", "b"]}
"""
with open(path, encoding="utf-8") as f:
data = json.load(f)
if isinstance(data, list):
return [str(s) for s in data]
if isinstance(data, dict) and "utterances" in data:
return [str(s) for s in data["utterances"]]
raise ValueError(
f"JSON file must be an array of strings or an object with 'utterances' key. "
f"Got: {type(data).__name__}"
)
def parse_args():
"""Parse command-line arguments."""
script_dir = Path(__file__).parent
default_output = script_dir.parent / "data" / "audio_examples" / "two_utterances_16k.wav"
parser = argparse.ArgumentParser(description="Generate test audio with SiliconFlow TTS (utterances + silence).")
parser.add_argument(
"-o", "--output",
type=Path,
default=default_output,
help=f"Output WAV file path (default: {default_output})"
)
parser.add_argument(
"-u", "--utterance",
action="append",
dest="utterances",
metavar="TEXT",
help="Utterance text (repeat for multiple). Ignored if --json is set."
)
parser.add_argument(
"-j", "--json",
type=Path,
metavar="PATH",
help="JSON file with utterances: array of strings or object with 'utterances' key"
)
parser.add_argument(
"--silence-ms",
type=int,
default=500,
metavar="MS",
help="Silence in ms between utterances (default: 500)"
)
parser.add_argument(
"--lead-silence-ms",
type=int,
default=200,
metavar="MS",
help="Silence in ms at start of file (default: 200)"
)
parser.add_argument(
"--trail-silence-ms",
type=int,
default=300,
metavar="MS",
help="Silence in ms at end of file (default: 300)"
)
return parser.parse_args()
async def main():
"""Main entry point."""
args = parse_args()
output_path = args.output
output_path.parent.mkdir(parents=True, exist_ok=True)
# Resolve utterances: JSON file > -u args > defaults
if args.json is not None:
if not args.json.is_file():
raise FileNotFoundError(f"Utterances JSON file not found: {args.json}")
utterances = load_utterances_from_json(args.json)
if not utterances:
raise ValueError(f"JSON file has no utterances: {args.json}")
elif args.utterances:
utterances = args.utterances
else:
utterances = [
"Hello, how are you doing today?",
"I'm doing great, thank you for asking!"
]
await generate_test_audio(
output_path=str(output_path),
utterances=utterances,
silence_ms=args.silence_ms,
lead_silence_ms=args.lead_silence_ms,
trail_silence_ms=args.trail_silence_ms,
voice="anna",
sample_rate=16000,
speed=1.0
)
if __name__ == "__main__":
asyncio.run(main())